WOOD IN THE CITY – MULTI STOREY RESIDENTIAL CLT BUILDINGS

PHILIPP ZUMBRUNNEN

promo_legno

CONTENT

MULTI STOREY RESIDENTIAL CLT BUILDINGS

- EURBAN
- Mid rise CLT buildings the UK past and present
- Why CLT The advantages
- Benefits and possibilities with CLT
- Mid rise CLT buildings Present and future projects
- Conclusion

EURBAN

INTEGRATED SUPPLY PARTNER

EURBAN is the UK's leading independent consultant and construction company specializing in the design and delivery of solid timber building structures. With a fully integrated service offering, we are known for our ability to deliver high-quality timber structures on time and on budget.

Our innovative and industry-leading services include specialist timber consultancy, strategic package procurement, value engineering and on-site construction services.

EURBAN

INTEGRATED SUPPLY PARTNER

Philipp Zumbrunnen 24th of May 2013

THE UK PAST AND PRESENT

2000 Market Entry

FIRST USEMerk Aichach

2005 Waterson Street

5 STOREY EURBAN

2009 Murray Grove

9 STOREY KLH UK

2011 Bridport House

8 STOREY EURBAN

2012 Whitmore Road

7 STOREY KLH UK

WATERSON STREET

- Hackney / London
- 2005
- Installation 6 weeks
- GIFA 1067m²
- 7 office units
- 11 flats

Philipp Zumbrunnen 24th of May 2013

WATERSON STREET

Philipp Zumbrunnen 24th of May 2013

THE UK PAST AND PRESENT

2000 Market Entry

FIRST USEMerk Aichach

2005 Waterson Street

5 STOREY EURBAN

2009 Murray Grove

9 STOREY KLH UK

2011 Bridport House

8 STOREY EURBAN

2012 Whitmore Road

7 STOREY KLH UK

BRIDPORT HOUSE

- Hackney, London
- 2010/11
- 16 months construction
- 8 storeys
- 4,154m² GIFA
- 41 residential units

Philipp Zumbrunnen 24th of May 2013

BRIDPORT HOUSE

Philipp Zumbrunnen 24th of May 2013

THE UK PAST AND PRESENT

2000 Market Entry

FIRST USEMerk Aichach

2005 Waterson Street

5 STOREY EURBAN

2009 Murray Grove

9 STOREY KLH UK

2011 Bridport House

8 STOREY EURBAN

2012 Whitmore Road

7 STOREY KLH UK

THE INTERNATIONAL PAST AND PRESENT

2005 Trondheim

2006 Mühlweg Wien

2012 Chibougamau

2012 **Forte Tower**

2013 Via Cenni

5 STOREY Norway

© Dietrich Untertrifaller

5 STOREY Austria

4 STOREY Canada

10 STOREY Australia

9 STOREY Italia

WHY CLT

THE ADVANTAGES

- Structural performance => New heights / Complex structures
- Simple details => Quality control / Architectural detailing
- Robust building system => Performance in extreme situations
- Offsite prefabrication => Reduced installation time and noise
- Sustainable material => Reduced environmental impact
- Single material / no composite => Recycling / Reuse

BRIDPORT HOUSE

- Carbon storage / Carbon storage
- Overall shrinkage
- Installation logistics on a very tight site

CARBON STORAGE / CARBON REDUCTION

Embodied Carbon

Operational Carbon

Whole life carbon

₩ HM Government

Low Carbon Construction

Philipp Zumbrunnen 24th of May 2013

Recommendation 2.1: That as soon as a sufficiently rigorous assessment system is in place, the Treasury should introduce into the Green Book a requirement to conduct a whole-life (embodied + operational) carbon appraisal and that this is factored into feasibility studies on the basis of a realistic price for carbon.

Recommendation 2.2: That the industry should agree with Government a standard method of measuring embodied carbon for use as a design tool and (as Recommendation 2.1 above) for the purposes of scheme appraisal.

CARBON STORAGE / CARBON REDUCTION

- •The comparison has been carried out with an in-situ concrete frame based on the superstructure only.
- •With the exception of Metsec which requires to be added to the RC frame, we have assumed all other components are the same for both forms of construction.
- •The embodied carbon figures are based on the ICE database version 2.0 issued January 2011.
- •These only include 'Cradle to Gate' therefore the transportation stage or the site energy required has not been yet considered.
- •For the concrete frame it has been assumed 59% recycled content for the reinforcement steel and taken the carbon figures for concrete with 30% fly ash which is current good practice for reducing environmental impact.

CARBON STORAGE / CARBON REDUCTION

Carbon Calculation for CLT	Quantity	Kg mass	Total weight kg	Kg Co ₂ /Kg ⁽¹⁾	Kg of Co ₂	Tonnes of Co ₂
Total Concrete for foundations	394.5m ³	2,400	946,800	0.124	117,403	117t
Total Reinforcement for Foundations	53.25t	1,000	53,250	1.4	91,058	75t
Total Timber for Frame	1576m³	590	929,840	0.0727	67610	67.6t
Hot Rolled Steel	1.52t	1,000	1,520	1.46	2,219	2t
Total Embodied Carbon			1,931,410		261,783	261.7t
Total Stored CO ₂					(1,182,000)	(1182t)

Approx 25% reduction in foundations due to 62% lighter CLT structure Applied Stora Enso's figure of 42.9kgCO2/m³ for the CLT panels Used a figure of 750kg of CO2 per m³ for the sequestered carbon

CLT Frame

Embodied Carbon 262 tonnes of CO₂

Philipp Zumbrunnen 24th of May 2013

CARBON STORAGE / CARBON REDUCTION

Calculation for RC Frame	Quantity	Kg mass	Total weight kg	Kg Co ₂ /Kg ⁽¹⁾	Kg of Co ₂	Tonnes of Co ₂
Total Concrete for foundations	514m³	2,400	1,233,600	0.124	152,966	153t
Total Steel Rebar for Foundations	71t	1,000	71,000	1.4	99,400	99t
Total Concrete for frame	1416m³	2,400	3,398,400	0.136	462,182	462t
Total Steel Rebar for Frame	290.1t	1,000	290,100	1.4	406,141	406t
Total Galvanised Steel for Infill Walls	2413.8m²	6.60	15,931	2.12	33,774	34t
Total Embodied Carbon			5,009,031		1,154,463	1,154t

Embodied Carbon data taken from ICE database version 2.0 January 2011 Embodied Carbon figure for concrete taken based on 30% fly ash content Assumed recycled content of Steel Reinforcement of 59%

Concrete Frame

Embodied Carbon 1,154 tonnes of CO₂

CARBON STORAGE / CARBON REDUCTION

RC Frame = 1,154 tonnes of CO2

Cross Laminated Timber Frame = 262 tonnes of CO2

The carbon **avoided** through using CLT is **892 tonnes**

The **operational energy** for 41 dwellings is **73.4 tonnes/year**

This is equal to 12 years of 'energy in use'

At 20% renewables this saving is equivalent to 58 years

Philipp Zumbrunnen 24th of May 2013

CARBON STORAGE / CARBON REDUCTION

RC Frame = 1,154 tonnes of CO2

Cross Laminated Timber Frame = 262 tonnes of CO2

The volume of timber used at Bridport House 1536m³

The sequestered is carbon is $750 \text{kg/CO}_2/\text{m}^3$ 1152t

Carbon avoided by not using RC frame 892t

Total avoided and sequestered CO2 2044t

With the **operational energy** calculated at **73.4 tonnes/year**

This is equal to 27 years of 'energy in use' for the 41 dwellings

At 20% renewables this saving is equivalent to 139 years

Philipp Zumbrunnen 24th of May 2013

CARBON STORAGE / CARBON REDUCTION

SHRINKAGE

Philipp Zumbrunnen 24th of May 2013

SHRINKAGE

Philipp Zumbrunnen 24th of May 2013

SHRINKAGE

Philipp Zumbrunnen 24th of May 2013

SHRINKAGE

SHRINKAGE

Philipp Zumbrunnen 24th of May 2013

INSTALLATION / LOGISTICS

Philipp Zumbrunnen 24th of May 2013

INSTALLATION / LOGISTICS

Philipp Zumbrunnen 24th of May 2013

INSTALLATION / LOGISTICS

Philipp Zumbrunnen 24th of May 2013

INSTALLATION / LOGISTICS

Philipp Zumbrunnen 24th of May 2013

PRESENT AND FUTRE PROJECTS

2013 Kingsgate House

2014 ??? Colevile Estate

2016 ??? VTI 2 Building

??? **TWIN TOWERS**

© Horden Cherry Lee Architects

© Karakusevic & Carson

© Karakusevic & Carson

7 STOREY

8 STOREY

9 STOREY

16 & 20 STOREY

CONCLUSION

MULTI STOREY RESIDENTIAL CLT BUILDINGS

- Engineered Timber Products opens new markets for timber
- Specially CLT gives new opportunities for the timber industry
- CLT is an attractive alternative to concrete or steel
- 10+ storeys are possible with CLT
- Timber structures are part of the CO₂ reduction strategy
- Solidtimber systems will have an advantage for future recycling
- There is still a lot of potential for the timber industry